风力发电技术的现状与发展趋势

5 结语

变桨距风力机的起动风速较定桨距风力机低,停机时传动机械的冲击应力相对缓和.风机正常工作时主要采用功率控制,对功率调节的速度取决于风机桨距调节系统的灵敏度.在实际应用中,随着并网型风力发电机组容量的增大,大型风力机的单个叶片已重达数吨,操纵如此巨大的惯性体,并且响应速度要能跟得上风速变化是相当困难的.事实上,如果没有其他措施的话,只是通过变桨距来调节风力发电机组的功率对高风速变化仍然是无能为力的.因此,变桨距风力发电机组,除了对桨叶进行节距控制外,还须通过控制发电机输出功率来调节整个风力发电机组的转速,使之在一定范围内能够快速响应风速的变化,使风力机的叶尖速比达到最佳,以捕获最大的风能.这就是近年来所发展的变速恒频风力发电技术

 详细信息
 详细信息
 详细信息
 详细信息
 详细信息
 详细信息
 详细信息
 详细信息
 详细信息
 详细信息
 详细信息
 详细信息

.

比较来看,定桨距失速控制风力机结构简单,造价低,并具有较高的安全系数,利于市场竞争,但失速型叶片本身结构复杂,成型工艺难度也较大.随着功率增大,叶片加长,所承受的气动推力增大,叶片的失速动态特性不易控制,使制造更大机组受到限制.变桨距型风力机能使叶片的节距角随风速而变化,从而使风力机在各种工况(起动、正常运转、停机)下按最佳参数运行,可使发电机在额定风速以下的工作区段有较大的功率输出,而在额定风速以上的高风速区段不超载,无需过大容量的发电机等.当然,它的缺点是需要有一套比较复杂的变距调节结构.现在这两种功率调节方案都在大、中型风力发电机组中得到了广泛应用.目前中国风电发展面临两个突出的问题:一是风电发展规模迅速扩大,形成巨大的市场空间;二是国产机组缺乏竞争力,进口机组以压倒的优势占领了中国风电装机的主要份额.因此,大型风电机组的国产化是推动我国风电持续发展的根本途径.

参考文献

[1] Z Chen and E Spooner. Current Source Thyristor Inverter and Its Active Compensation System [C] . IEE 2003:448-452.

[2]Z Chen and E Spooner .Voltage Source Inverters for High-power Variable-voltage DC Power Sources [ J ] .IEE Proc-Gener Transm Distrib, 2001,148(5):439-446.

[3] Omonobu Senj yul, Satoshi Tamaki', Naomitsu Urasakil,K Atsumi Uezato’Toshihisa Funabashi, and Hideki Fujita. Wind Velocity and Position Sensorless Operation for PMSG Wind Generator [ C ] . IEEE Power Electronics and Drive Systems 2003:787-791.

[4] Yang Zhenkun, Liang Hui. A DSP Control System for the Grid-connected Inverter in Wind Energy Conversion System [C]. IEEE 2005 :1050-1053.

[5] Kelvin Tan and Syed Islam. OptimumControl Strategies in Energy Conversion of PMSG Wind Turbine System without Mechanical Sensors [ J ] . IEEE Transactionson Energy Conversion,2004,19(2).

[6] Bimal K Bose. Modern Power Electronics and AC Drives :244-245.

[7] Ki-Chan Kim', Seung-Bin Lim'. Analysis on the Direct Driven High Power Permanent Magnet Generator for Wind Turbine [C] . IEEE Power Electronics and Drive Systems 2005: 243-247.

[8] Morren J, Pierik J T G, Haan SWH de. Fast Dynamic Modelling of Direct-drive Wind Turbines[C]. in Proc PClM Europe 2004, N mberg, Germany 2004:25-27.

[9] 贾要勤. 风力发电实验用模拟风力机[J]. 太阳能学报,2004,25(6):735-739.

[10] Chang L, Doraiswami R, Boutot T, Kojabadi H .Development of a Wind Turbine Simulator for 5Wind Energy Conversion Systems [C] . IEEE Electricaland Comput er Engineering , 2000 Canadian Conference on, 2000,1:550-554.

[11] 吴捷. 许燕灏. 基于异步电动机的风力机风轮动态模拟方法[J]. 华南理工大学学报(自然科学版),2006,33(6):46-49.

[12] Kojabadi H M, Liuchen Chang, Boutot T. Development of a Novel Wind Turbine Simulator for Wind Energy Conversion Systems Using an Inverter-controlled Induction Motor[J]. IEEE Trans .on EC, 2004,19(3):547-552.

[13] Farret F A, Gules R,Marian J.Micro-turbine Simulator Based on Speed and Torque of a DC Motor to Drive Actually Loaded Generators[C]. IEEE ICCDCS’,1995,11:89-93.

[14] Pena R,Cardenas R,Blasco R,Asher G,Clare J .A Cage Induction Generator Using Back to Back PWM Converters for Variable Speed Grid Connected Wind Energy System[C]. IEEE IECON', 2001,(2):1376-1381.

[15] Cardenas R, Pena R. Sensorless Vector Control of Induction Machines for Variable-speed Wind Energy Applications [J]. IEEE Trans on EC, 2004,19(1):196-205.

风力发电机输出轴,风力发电机主轴,风力发电机转动轴,风力电机定子主轴,风力发电联轴器
首页 >>联轴器 >>联轴器配件>>联轴器资料 风力发电机转动轴 风力发电机主轴
风力发电机组的运行维护技术 风力发电技术分析 风力发电机转动轴加工设备
风力电机定子主轴工程业绩 风力发电机主轴系列产品部分展示图 风力发电的现状与发展趋势(一)
风力发电的现状与发展趋势(二) 风力发电的现状与发展趋势(三) 风力发电的现状与发展趋势(四)
风力发电的现状与发展趋势(五) 株洲南车电机 民用风力发电机得不到大力推广
风力涡轮机如何工作 风力发电 风力发电行业分析及投资咨询报告目录(一)
风力发电行业分析及投资咨询报告目录(二) 风力发电行业分析及投资咨询报告目录(三) 风力发电行业分析及投资咨询报告目录(四)
风力发电行业分析及投资咨询报告目录(五) 风力发电行业分析及投资咨询报告目录(六) 风力发电行业分析及投资咨询报告目录(七)
风力发电行业分析及投资咨询报告目录(八) 风力发电行业分析及投资咨询报告目录(九) 风力发电行业分析及投资咨询报告目录(十)
滚子链的结构和规格,齿形链,链轮 风力发电联轴器 联轴器链接页
风力发电 联轴器选用指南 联轴器简介
如何进行联轴器的拆卸 对中国联轴器设备行业发展的几点思考